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Reference

Presentation based on work in:

Regionalized optimization, arXiv:2201.11876 [SP22]
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Motivation (1)

Data with multiple point of view on it: for example images of Dog with
two types of blurs at different intensity of blurring
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Motivation (2)

Cat with two types of blur at different intensity of blurring:

How to classify dogs and cats taking into account the extra data given
by the different point of views?

Sergeant-Perthuis (LmL) Regionalized optimisation CRIL 4 / 33



Framework: Structured Data (1)

Data: collection of images (ui,j , i ∈ {0,1,2}, j ∈ {0,1})

u1,0 u1,1

u0,0

u2,0 u2,1
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Framework: Structured Data (2)

Denote first kind of blurring as B1(λ) and second kind as B2(λ),
u0,0 u1,0 To go from u0,0 to u1,0,

u1,0 = B1(0.3)[u0,0]

Compatibility relations:

u1,0= B1(0.3)[u0,0] u1,1 = B1(0.5)[u1,0]
u0,0 = id [u0,0]

u2,0 = B2(0.1)[u0,0] u2,1 = B2(0.4)[u2,0]
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Framework: Structured Data (3)

Formally, compatibility relations are equivalent to saying that:
(ui,j , i ∈ {0,1,2}, j ∈ {0,1}) is a section of a functor G over a partially
ordered set (poset) A .

Poset A :

0,0

1,0 1,1

2,0 2,1

0,0
≤ 1,0

0,0 ≤ 2,0

1,0 ≤ 1,1

2,0 ≤ 2,1

Functor G:

R2d

R2d R2d

R2d R2d

G
0,0
1,0

= B1(0
.3)

G 0,02,0 = B
2 (0.1)

G1,0
1,1 = B1(0.5)

G2,0
2,1 = B2(0.4)

where R2d is the space in which
the images live.
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Framework: Structured Data (4)

Partially ordered set A : a relation ≤ (⊆ A ×A ) such that,
1 a ≤ a
2 (Transitivity) b ≤ a and c ≤ b then c ≤ a
3 b ≤ a and a ≤ b then a = b

Functor G over a poset:
1 sends elements a ∈ A to a (vector) space G(a)
2 relations b ≤ a to (linear) morphisms between spaces

Gb
a : G(b)→ G(a)

3 Respects Transitivity:
Gb

aGc
b = Gc

a
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Framework: Structured Data (5)

Limit of a functor: (limG ) set of collections (ua ∈ G(a),a ∈ A ) that are
compatible under the functor :

∀b ≤ a, Gb
a(ub) = ua

Now: Data is the limit of a functor over a poset.
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Framework: Loss (1)

To classify cats or dogs over a dataset D = [(x i , y i), i = 1..N] of size N:
Cross entropy

l(θ) =
1
N

∑
i=1..N

lnpθ(y i |x i)

where y = 0 for a cat and y = 1 for a dog.
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Framework: Loss (2)

In our case there are multiple points of views on the images: the
dataset is a collection of samples [(x i

a(i), y
i), i = 1..N] over different

view points a ∈ A where a(i) is the view point on the image, recall
that possible values are:

(0,0), (1,0), (1,1), (2,0), (2,1)

For example for the following sample

a(i) = (1,0)
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Framework: Loss (3)

Dataset can be reorganized as collection of datasets
[(x i

a, y i), i = 1..Na] for a ∈ A .

The expression of the loss does not change with the point of view on
the data,

l0,0 =
1

N0,0

∑
i=1..N0,0

lnpθ0,0(y
i |x i

0,0)

l1,0 =
1

N1,0

∑
i=1..N1,0

lnpθ1,0(y
i |x i

1,0)
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Framework: Loss (4)

For a given point of view a, the previous loss is simply the cross
entropy for the dataset restricted to this point of view:

la(pθa) =
1

Na

∑
i=1..Na

lnpθa(y
i |x i

a)

Formally, for each element of the poset a ∈ A , we consider a
collection of losses (functions) la : G(a)→ R. We now call the points of
view ‘local’ (→ inspired by topology).
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Framework: Loss (4)

Problem: How to optimize la for all points of view at the same time?
Answer?: Total loss is the sum of the losses? l =

∑
a∈A la.

• Very redundant!
• u ∈ limG is a ‘global’ reconstruction of ‘local’ points of view

ua,a ∈ A we want the loss to ‘behave’ the same way
• In our example, the non blurred image u0,0 is enough to index the

sections of G:
G ∼= R2d

• However l ̸= l0,0. This loss does not behave well under ‘global
reconstruction’
• NOT an answer
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Framework: Loss (5)

We follow the construction of Yedidia,Freeman, Weiss in the celebrated
article Constructing free-energy approximations and generalized belief
propagation algorithms[YFW05]. They use inclusion–exclusion
principle to build an entropy on probability distribution compatible by
marginalization.
• Good properties under ‘global reconstruction’ Proposition 2.2

[SP22]
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Framework: Loss (6)

Inclusion–exclusion principle: simplest version for two set A,B then,

|A ∪ B| = |A|+ |B| − |A ∩ B| (0.1)

Rota in his celebrated article On the foundations of combinatorial
theory I. Theory of Möbius functions [Rot64], extended
inclusion–exclusion to any poset by introducing Möbius inversion.
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Framework: Loss (7)

Two important functions for poset A :
• ζ funtion of the poset, for any f ∈

⊕
a∈A Z,

∀a ∈ A ζ(f )(a) =
∑
b≤a

f (b)

• Its inverse (Proposition 2 [Rot64]), Möbius inversion µ,

∀a ∈ A µ(f )(a) :=
∑
b≤a

µ(a,b)f (b)
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Framework: Loss (7)

Proposed global loss (called ‘Regionalized loss’ in reference to
Yedidia,Freeman, Weiss construction):

for a functor F from A op (the poset with inverse relation) to vector
spaces, and u = (ua ∈ F (a),a ∈ A ):

l(u) =
∑
a∈A

∑
b≤a

µ(a,b)lb(ub) (RLoss)

Solve
minu∈limF l(u)
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Framework: Loss (8)

The Regionalized loss can be rewritten as,

l(u) =
∑
a∈A

c(a)la(ua) (0.2)

where c(a) =
∑

b≥a µ(b,a).

In the inclusion-exclusion principle for two sets A,B, c(A) = 1,
c(B) = 1, c(A ∩ B) = −1.

|A ∪ B| = |A|+ |B| − |A ∩ B| (0.3)
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Critical points of Regionalized loss

When G is a functor from A to vector spaces, the collection of dual
maps

Gb
a
∗
: G(a)∗ → G(b)∗

defines a functor from A op to vector spaces denoted as G∗

Theorem (GSP)
F a functor from A op to vector spaces. An element u ∈ limF is a
critical point of the ‘global’ loss l if and only if there is
(ma→b ∈

⊕
a,b:
b≤a

F (b)∗) such that for any a ∈ A ,

du la =
∑
b≤a

F a
b
∗

∑
c≤b

F b
c
∗
mb→c −

∑
c≥b

mc→b

 (CP)
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Message passing algorithms (1)

Assume that the local losses la,a ∈ A are such that there is a
collection of functions ga,a ∈ A that inverses the relation induced by
differentiating the local losses, i.e.

dua la = y ⇐⇒ x = ga(ya)

Messages:

m(t) ∈
⊕

a,b:
b≤a

F (b)∗: ma→b for b ≤ a

Auxiliary variables,

A(t) ∈
⊕
a∈A

F (a)∗
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Message passing algorithms (2)

For any a,b ∈ A such that b ≤ a, the update rule is given by,

Aa(t) =
∑

b:b≤a

∑
c:b≥c

F a
c
∗mb→c(t)−

∑
b:b≤a

∑
c:c≥b

F a
b
∗mc→b(t)

ma→b(t + 1) = ma→b(t) + F a
b ga(Aa(t))− gb(Ab(t)) (MSP)
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Fix points of MSP↔ Critical points CP

Theorem (GSP)
Fix points of message passing algorithm (MSP) are critical points of
‘global’ Regionalized loss (Rloss): if MSP(m∗) = m∗, then let ∀a ∈ A ,

u∗
a = ga

∑
b≤a

F a
b
∗

∑
c≤b

F b
c
∗
m∗

b→c −
∑
c≥b

m∗
c→b


Then u∗ satisfies (CP).

Extends previous result of Yedidia, Freeman, Weiss, Peltre (Theorem 5
[YFW05], Theorem 5.15 [Pel20]) stating that:

Fix points of General Belief Propagation↔ critical points of Region
based approximation of free energy.
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To go further (1)

Understanding expression of critical points:

Zeta function ζ and Möbius functions µ for functors:
• for u ∈

⊕
a∈A G(a), and a ∈ A ,

ζG(u)(a) =
∑
b≤a

Gb
a(ub)

•
µG(u)(a) =

∑
b≤a

µ(a,b)Gb
a(vb)

µG is the inverse of ζG
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To go further (2)

Understanding expression of critical points:

For F a functor from A op to vector spaces, critical points u of ‘global’
regionalized loss are such that:

µF∗du l |limF = 0
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To go further (3)

Understanding expression of critical points:

0→ limF →
⊕
a∈A

F (a)
δF→

⊕
a,b∈A

a≥b

F (b)

where for any v ∈
⊕

a,b∈A
a≥b

F (b) and a,b ∈ A such that b ≤ a,

δF (v)(a,b) = F a
b (va)− vb

This is simply stating that ker δ = limF .
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To go further (4)

Understanding expression of critical points:

0← (limF )∗ ←
⊕
a∈A

F (a)∗
dF←

⊕
a,b∈A

a≥b

F (b)∗

Pose d = δ∗. For any la→b ∈
⊕

a,b∈A
a≥b

F (b)∗ and a ∈ A ,

dm(a) =
∑
a≥b

F a
b
∗
(ma→b)−

∑
b≥a

mb→a
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To go further (5)

Rewriting condition on fix points:

µ∗
F duf ∈ imd

is the same as the fact that there is (ma→b ∈ F (b)∗|a,b ∈ A ,b ≤ a)
such that,

dx f = ζF∗dm
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To go further (6)

Understanding this choice of message passing algorithm:

g Lagrange multipliers m to u ∈
⊕

a∈A F (a). δF (u) = 0 defines the
constraints on u.
δF gζF∗dF sends a Lagrange multiplier m ∈

⊕
a,b∈A

a≥b
F (b)∗ to a

constraint c ∈
⊕

a,b∈A
a≥b

F (b) defined as, for a,b ∈ A such that b ≤ a,

c(a,b) = δF gζF∗dF m(a,b) = F a
b ga(ζF∗dF m(a))− gb(ζF∗dF l = m(b)))

(0.4)
We are interested in c = 0, i.e.

δF gζF∗dF m = 0
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To go further (7)

Understanding this choice of message passing algorithm:

Choice of algorithm on the Lagrange multipliers so that
δF gζF∗dF m = 0,

m(t + 1)−m(t) = δF gζF∗dF m(t)

Any other choice would also be a good candidate!
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Example of applications

• Extension of General Belief Propagation to noisy channel
networks
• PCA for filtered data like time series
• Inference (learning) with multimodal integration, inference on

scenes with multiple views.
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Thank you very much for your attention

Thank you very much for your attention!
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