Regionalized optimisation and message passing algorithms

Gregoire Sergeant-Perthuis

Laboratoire de Mathématiques de Lens Université d'Artois

Séminaire du CRIL, March 31 2022

Sergeant-Perthuis (LmL)

Presentation based on work in:

Regionalized optimization, arXiv:2201.11876 [SP22]

Sergeant-Perthuis (LmL)

∃ ► < ∃ ►</p>

CRIL

< 17 ▶

Motivation (1)

Data with multiple point of view on it: for example images of Dog with two **types of blurs at different intensity of blurring**

- T

Sergeant-Perthuis (LmL)

Regionalized optimisation

< ≣ ► < : CRIL

3/33

Motivation (2)

Cat with two types of blur at different intensity of blurring:

How to classify dogs and cats taking into account the extra data given by the different point of views?

Sergeant-Perthuis (LmL)

Regionalized optimisation

CRIL

< 🗇 🕨 < 🖃 🕨

4/33

Framework: Structured Data (1)

Data: collection of images $(u_{i,j}, i \in \{0, 1, 2\}, j \in \{0, 1\})$

 $U_{1,1}$

 $U_{0.0}$

Sergeant-Perthuis (LmL)

Regionalized optimisation

CRIL

・ 戸 ト ・ 三 ト ・

Denote first kind of blurring as $B_1(\lambda)$ and second kind as $B_2(\lambda)$,

To go from $u_{0,0}$ to $u_{1,0}$,

 $u_{1,0} = B_1(0.3)[u_{0,0}]$

Compatibility relations:

$$u_{0,0} = id[u_{0,0}] \qquad u_{1,0} = B_1(0.3)[u_{0,0}] \qquad u_{1,1} = B_1(0.5)[u_{1,0}]$$
$$u_{2,0} = B_2(0.1)[u_{0,0}] \qquad u_{2,1} = B_2(0.4)[u_{2,0}]$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Framework: Structured Data (3)

Formally, compatibility relations are equivalent to saying that: $(u_{i,j}, i \in \{0, 1, 2\}, j \in \{0, 1\})$ is a *section* of a *functor G* over a *partially ordered set* (poset) \mathscr{A} .

Framework: Structured Data (4)

Partially ordered set \mathscr{A} : a relation $\leq (\subseteq \mathscr{A} \times \mathscr{A})$ such that,

- **1** a ≤ a
- (Transitivity) $b \le a$ and $c \le b$ then $c \le a$
- **3** $b \le a$ and $a \le b$ then a = b

Functor G over a poset:

- **1** sends elements $a \in \mathscr{A}$ to a (vector) space G(a)
- 2 relations $b \le a$ to (linear) morphisms between spaces

$$G^b_a:G(b)
ightarrow G(a)$$

3 Respects Transitivity:

$$G^b_a G^c_b = G^c_a$$

<u>Limit of a functor:</u> (lim *G*) set of collections ($u_a \in G(a), a \in \mathscr{A}$) that are compatible under the functor :

$$\forall b \leq a, \quad G_a^b(u_b) = u_a$$

Now: Data is the limit of a functor over a poset.

9/33

To classify cats or dogs over a dataset $D = [(x^i, y^i), i = 1..N]$ of size *N*: **Cross entropy**

$$I(\theta) = \frac{1}{N} \sum_{i=1..N} \ln p_{\theta}(y^i | x^i)$$

where y = 0 for a cat and y = 1 for a dog.

Sergeant-Perthuis (LmL)

Framework: Loss (2)

In our case there are multiple points of views on the images: the dataset is a collection of samples $[(x_{a(i)}^i, y^i), i = 1..N]$ over **different view points** $a \in \mathscr{A}$ where a(i) is the view point on the image, recall that possible values are:

For example for the following sample

$$a(i) = (1,0)$$

Framework: Loss (3)

Dataset can be reorganized as collection of datasets $[(x_a^i, y^i), i = 1..N_a]$ for $a \in \mathscr{A}$.

The expression of the loss does not change with the point of view on the data,

$$I_{0,0} = \frac{1}{N_{0,0}} \sum_{i=1..N_{0,0}} \ln p_{\theta_{0,0}}(y^i | x_{0,0}^i)$$

$$I_{1,0} = \frac{1}{N_{1,0}} \sum_{i=1..N_{1,0}} \ln p_{\theta_{1,0}}(y^i | x_{1,0}^i)$$

For a given point of view *a*, the previous loss is simply the cross entropy for the dataset restricted to this point of view:

$$I_a(p_{ heta_a}) = rac{1}{N_a}\sum_{i=1..N_a}\ln p_{ heta_a}(y^i|x^i_a)$$

Formally, for each element of the poset $a \in \mathscr{A}$, we consider a collection of losses (functions) $l_a : G(a) \to \mathbb{R}$. We now call the points of view 'local' (\rightarrow inspired by topology).

A B < A B </p>

<u>*Problem:*</u> How to optimize I_a for all points of view at the same time? <u>*Answer*</u>?: Total loss is the sum of the losses? $I = \sum_{a \in \mathcal{A}} I_a$.

- Very redundant!
- $u \in \lim G$ is a 'global' reconstruction of 'local' points of view $u_a, a \in \mathscr{A}$ we want the loss to 'behave' the same way
- In our example, the non blurred image *u*_{0,0} is enough to index the sections of *G*:

$$G\cong \mathbb{R}^{2d}$$

- However $l \neq l_{0,0}$. This loss **does not** behave well under 'global reconstruction'
- NOT an answer

14/33

・ 同 ト ・ ヨ ト ・ ヨ ト ・

We follow the construction of Yedidia, Freeman, Weiss in the celebrated article *Constructing free-energy approximations and generalized belief propagation algorithms*[YFW05]. They use inclusion–exclusion principle to build an entropy on probability distribution compatible by marginalization.

 Good properties under 'global reconstruction' Proposition 2.2 [SP22]

A B F A B F

Inclusion-exclusion principle: simplest version for two set A, B then,

$$|A \cup B| = |A| + |B| - |A \cap B|$$
(0.1)

Rota in his celebrated article *On the foundations of combinatorial theory I. Theory of Möbius functions* [Rot64], extended inclusion–exclusion to any poset by introducing Möbius inversion.

Two important functions for poset \mathscr{A} :

• ζ function of the poset, for any $f \in \bigoplus_{a \in \mathscr{A}} \mathbb{Z}$,

$$\forall a \in \mathscr{A} \quad \zeta(f)(a) = \sum_{b \leq a} f(b)$$

Its inverse (Proposition 2 [Rot64]), Möbius inversion μ,

$$\forall a \in \mathscr{A} \quad \mu(f)(a) := \sum_{b \leq a} \mu(a, b) f(b)$$

Sergeant-Perthuis (LmL)

Proposed global loss (called 'Regionalized loss' in reference to Yedidia, Freeman, Weiss construction):

for a functor *F* from \mathscr{A}^{op} (the poset with inverse relation) to vector spaces, and $u = (u_a \in F(a), a \in \mathscr{A})$:

$$I(u) = \sum_{a \in \mathscr{A}} \sum_{b \le a} \mu(a, b) I_b(u_b)$$
(RLoss)

Solve

 $\min_{u \in \lim F} I(u)$

Sergeant-Perthuis (LmL)

A B F A B F

The Regionalized loss can be rewritten as,

$$I(u) = \sum_{a \in \mathscr{A}} c(a) I_a(u_a)$$
(0.2)

where $c(a) = \sum_{b \ge a} \mu(b, a)$.

In the inclusion-exclusion principle for two sets A, B, c(A) = 1, $c(B) = 1, c(A \cap B) = -1$.

$$|A \cup B| = |A| + |B| - |A \cap B|$$
 (0.3)

Sergeant-Perthuis (LmL)

イロト イポト イヨト イヨト

Critical points of Regionalized loss

When G is a functor from \mathscr{A} to vector spaces, the collection of dual maps

$$G_a^{b^*}:G(a)^* o G(b)^*$$

defines a functor from \mathscr{A}^{op} to vector spaces denoted as G^*

Theorem (GSP)

F a functor from \mathscr{A}^{op} to vector spaces. An element $u \in \lim F$ is a critical point of the 'global' loss I if and only if there is $(m_{a \to b} \in \bigoplus_{\substack{a,b:\\b \leq a}} F(b)^*)$ such that for any $a \in \mathscr{A}$,

$$d_{u}I_{a} = \sum_{b \leq a} F_{b}^{a*} \left(\sum_{c \leq b} F_{c}^{b*} m_{b \to c} - \sum_{c \geq b} m_{c \to b} \right)$$
(CP)

Assume that the local losses I_a , $a \in \mathscr{A}$ are such that there is a collection of functions g_a , $a \in \mathscr{A}$ that inverses the relation induced by differentiating the local losses, i.e.

$$d_{u_a}l_a = y \iff x = g_a(y_a)$$

Messages:

$$m(t) \in \bigoplus_{\substack{a,b:\\b\leq a}} F(b)^*$$
: $m_{a o b}$ for $b \leq a$

Auxiliary variables,

$$A(t) \in \bigoplus_{a \in \mathscr{A}} F(a)^*$$

Sergeant-Perthuis (LmL)

21/33

For any $a, b \in \mathscr{A}$ such that $b \leq a$, the update rule is given by,

$$A_{a}(t) = \sum_{b:b \le a} \sum_{c:b \ge c} F_{c}^{a*} m_{b \to c}(t) - \sum_{b:b \le a} \sum_{c:c \ge b} F_{b}^{a*} m_{c \to b}(t)$$
$$m_{a \to b}(t+1) = m_{a \to b}(t) + F_{b}^{a} g_{a}(A_{a}(t)) - g_{b}(A_{b}(t))$$
(MSP)

Sergeant-Perthuis (LmL)

< ロ ト < 同 ト < 三 ト < 三 ト

Theorem (GSP)

Fix points of message passing algorithm (MSP) are critical points of 'global' Regionalized loss (Rloss): if $MSP(m^*) = m^*$, then let $\forall a \in \mathscr{A}$,

$$u_a^* = g_a \left[\sum_{b \leq a} F_b^{a*} \left(\sum_{c \leq b} F_c^{b*} m_{b \to c}^* - \sum_{c \geq b} m_{c \to b}^* \right) \right]$$

Then u^{*} satisfies (CP).

Extends previous result of Yedidia, Freeman, Weiss, Peltre (Theorem 5 [YFW05], Theorem 5.15 [Pel20]) stating that:

Fix points of General Belief Propagation ↔ critical points of Region based approximation of free energy.

Sergeant-Perthuis ((LmL)
---------------------	-------

く 戸 ト く ヨ ト く ヨ ト 一

23/33

Zeta function ζ and Möbius functions μ for functors:

• for
$$u \in \bigoplus_{a \in \mathscr{A}} G(a)$$
, and $a \in \mathscr{A}$,

$$\zeta_G(u)(a) = \sum_{b \leq a} G_a^b(u_b)$$

$$\mu_G(u)(a) = \sum_{b \leq a} \mu(a, b) G^b_a(v_b)$$

 μ_{G} is the inverse of ζ_{G}

For *F* a functor from \mathscr{A}^{op} to vector spaces, critical points *u* of 'global' regionalized loss are such that:

$$\mu_{F^*} d_u I|_{\lim F} = 0$$

Sergeant-Perthuis (LmL)

・ 同 ト ・ ヨ ト ・ ヨ ト

$$0
ightarrow \lim F
ightarrow igoplus_{a \in \mathscr{A}} F(a) \stackrel{\delta_F}{
ightarrow} igoplus_{a, b \in \mathscr{A} \atop a \geq b} F(b)$$

where for any $v \in \bigoplus_{\substack{a,b \in \mathscr{A} \\ a \ge b}} F(b)$ and $a, b \in \mathscr{A}$ such that $b \le a$, $\delta_F(v)(a,b) = F_b^a(v_a) - v_b$

This is simply stating that ker $\delta = \lim F$.

Sergeant-Perthuis (LmL)

$$0 \leftarrow (\lim F)^* \leftarrow \bigoplus_{a \in \mathscr{A}} F(a)^* \xleftarrow{\mathsf{d}_F}_{\substack{a, b \in \mathscr{A} \\ a \geq b}} F(b)^*$$

Pose d = δ^* . For any $l_{a \to b} \in \bigoplus_{\substack{a,b \in \mathscr{A} \\ a \ge b}} F(b)^*$ and $a \in \mathscr{A}$, dm(a) = $\sum_{a \ge b} F_b^{a*}(m_{a \to b}) - \sum_{b \ge a} m_{b \to a}$

Sergeant-Perthuis (LmL)

<ロト <回 > < 回 > < 回 > .

Rewriting condition on fix points:

 $\mu_F^* \textit{d}_u f \in \operatorname{im} d$

is the same as the fact that there is $(m_{a \rightarrow b} \in F(b)^* | a, b \in \mathscr{A}, b \leq a)$ such that,

 $d_x f = \zeta_{F^*} dm$

Sergeant-Perthuis (LmL)

・ 同 ト ・ ヨ ト ・ ヨ ト

Understanding this choice of message passing algorithm:

g Lagrange multipliers *m* to $u \in \bigoplus_{a \in \mathscr{A}} F(a)$. $\delta_F(u) = 0$ defines the constraints on *u*.

 $\delta_F g \zeta_{F^*} d_F$ sends a Lagrange multiplier $m \in \bigoplus_{\substack{a,b \in \mathscr{A} \\ a \geq b}} F(b)^*$ to a constraint $c \in \bigoplus_{\substack{a,b \in \mathscr{A} \\ a \geq b}} F(b)$ defined as, for $a, b \in \mathscr{A}$ such that $b \leq a$,

$$c(a,b) = \delta_F g\zeta_{F^*} \mathsf{d}_F m(a,b) = F_b^a g_a(\zeta_{F^*} \mathsf{d}_F m(a)) - g_b(\zeta_{F^*} \mathsf{d}_F I = m(b)))$$
(0.4)

We are interested in c = 0, i.e.

$$\delta_F g \zeta_{F^*} \mathbf{d}_F m = \mathbf{0}$$

Sergeant-Perthuis (LmL)

く 戸 ト く ヨ ト く ヨ ト 一

Understanding this choice of message passing algorithm:

Choice of algorithm on the Lagrange multipliers so that $\delta_F g \zeta_{F^*} d_F m = 0$,

$$m(t+1) - m(t) = \delta_F g \zeta_{F^*} \mathsf{d}_F m(t)$$

Any other choice would also be a good candidate!

イロト イポト イヨト イヨト

- Extension of General Belief Propagation to noisy channel networks
- PCA for filtered data like time series
- Inference (learning) with multimodal integration, inference on scenes with multiple views.

E ► < E ► CRIL

Thank you very much for your attention

Thank you very much for your attention!

∃ ► < ∃ ►</p>

4 A 1

References I

- Olivier Peltre, Homology of Message-Passing Algorithms, http://opeltre.github.io, 2020, Ph.D. thesis (preprint).
- Gian-Carlo Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Probability theory and related fields 2 (1964), no. 4, 340–368.
- Grégoire Sergeant-Perthuis, *Regionalized optimization*, arXiv:2201.11876, 2022.
- Jonathan S Yedidia, William T Freeman, and Yair Weiss, *Constructing free-energy approximations and generalized belief propagation algorithms*, IEEE Transactions on information theory **51** (2005), no. 7, 2282–2312.

ヘロト 人間 ト 人 臣 ト 人 臣 トー